Rabu, 20 Juni 2018

Sponsored Links

Binomial coefficient - YouTube
src: i.ytimg.com

Dalam matematika, salah satu bilangan bulat positif yang terjadi sebagai koefisien dalam teorema binomial adalah koefisien binomial . Umumnya, koefisien binomial diindeks oleh sepasang bilangan bulat n > = k > = 0 dan ditulis < math xmlns = "http://www.w3.org/1998/Math/MathML" alttext = "{\ displaystyle {\ tbinom {n} {k}}.}">                                                                                 (                                                n                  k                                               )                                                         .                  {\ displaystyle {\ tbinom {n} {k}}.}    Ini adalah koefisien x k istilah dalam ekspansi polinomial dari kekuatan binomial (1 x ) n , dan itu diberikan dengan formula

                                                               (                                          n                k                                         )                                           =                                                 n               !                                          k               !                (                n                -                k               )               !                                          .                  {\ displaystyle {\ binom {n} {k}} = {\ frac {n!} {k! (n-k)!}}.}   

di mana                                                                        (                                             4                2                                          )                                                    =                                                             4                 !                                            2                 !                2                 !                                                    =         6             {\ displaystyle {\ tbinom {4} {2}} = {\ tfrac {4!} {2! 2!}} = 6}   , dll.

Banyak properti                                                                        (                                            n                k                                          )                                                         {\ displaystyle {\ tbinom {n} {k}}}   juga berlaku untuk koefisien binomial umum                                                                        (                                            z                k                                          )                                                         {\ displaystyle {\ tbinom {z} {k}}}  untuk setiap bilangan kompleks z dan bilangan bulat k > = 0.


Video Binomial coefficient



History and notation

Andreas von Ettingshausen memperkenalkan notasi                                                                        (                                            n                k                                          )                                                         {\ displaystyle {\ tbinom {n} {k}}}   pada tahun 1826, meskipun jumlahnya telah diketahui berabad-abad sebelumnya (lihat segitiga Pascal). Diskusi terperinci yang paling awal diketahui tentang koefisien binomial adalah dalam komentar abad ke-10, oleh Halayudha, pada teks Sanskrit kuno, Pingala's Chanda ??? stra . After leaving 1150, matematikawan India Bhaskaracharya member of the European Union exhibited co-operative binomial dalam bukunya L? L? Vat? .

Alternate notes include C , , ) , n k , n C k , C k n , C n k , and C n , k in everything C stands for combination or option . Many calculators use the notation variant C because they can represent it on a single line view. In this form, the binomial coefficients are easy to compare with k -permutations of n , written as P ( n , k ) , etc.

Maps Binomial coefficient



Definition and interpretation

Untuk bilangan natural (diambil untuk memasukkan 0) n dan k , koefisien binomial                                                                        (                                            n                k                                          )                                                         {\ displaystyle {\ tbinom {n} {k}}}  dapat didefinisikan sebagai koefisien monomial X k di perluasan (1 X ) n . Koefisien yang sama juga terjadi (jika k <= n ) dalam rumus binomial

(applies to all elements x , y of the commutative ring), which explains the name "binomial coefficients".

Ada beberapa metode untuk menghitung nilai                                                                        (                                            n                k                                          )                                                         {\ displaystyle {\ tbinom {n} {k}}}  tanpa benar-benar memperluas kekuatan binomial atau menghitung k -kombinasi.

Rumus rekursif

Salah satu metode menggunakan rumus rekursif, murni aditif

                                                       (                                      n              k                                     )                                      =                                            (                                                      n                -                1                                            k                -                1                                                   )                                                                               (                                                      n                -                1                            k                                     )                                                         untuk semua bilangan bulat                n        ,        k       :        1       <=        k       <=        n        -        1        ,             {\ displaystyle {\ binom {n} {k}} = {\ binom {n-1} {k-1}} {\ binom {n- 1} {k}} \ quad {\ text {for all integers}} n, k: 1 \ leq k \ leq n-1,}  Â

dengan nilai awal/batas

                                                       (                                      n              0                                     )                                      =                                            (                                      n              n                                     )                                      =        1                           untuk semua bilangan bulat                n        > =         0        ,             {\ displaystyle {\ binom {n} {0}} = {\ binom {n} {n}} = 1 \ quad {\ text {for all integers}} n \ geq 0,}  Â

The following formula takes into account the set {1,2,3,..., n } and calculates separately (a) groupings k that include a particular set of elements, say " i ", in each group (since " i " has been selected to fill one place in each group, we only need to select k n Ã,-1) and (b) all k -grouping not included " i "; it mentions all possible k -the combination of elements n . This also follows from tracing contributions to X k in (1 X ) n -1 (1 X ) . Since there is zero X n 1 or X -1 in ( 1 X ) n , someone might expand the definition beyond the bounds above to include                                                                (        ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂ,                                 n      Â         ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂ,                             )        ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂ,                      ÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂÂ,                       {\ displaystyle {\ tbinom {n} {k}}}   Ã, = Ã, 0 when k Ã, & gt; Ã, n or k Ã,  · This 0. This recursive formula allows the construction of a Pascal triangle, surrounded by a white space where zero, or a trivial coefficient, will.

Replication formula

Metode yang lebih efisien untuk menghitung koefisien binomial individu diberikan oleh rumus

                                                       (                                      n              k                                     )                                      =                                          n                                               k                 _                                                                   k               !                                     =                                            n              (              n              -              1               )              (              n              -              2               )               ?              (              n              -              (              k              -              1               )               )                                      k              (              k              -              1               )              (              k              -              2               )               ?              1                                     =                 ?                      saya             =            1                                k                                                             n                          1              -              saya                        saya                         ,             {\ displaystyle {\ binom {n} {k}} = {\ frac {n ^ {\ underline {k}}} {k!}} = {\ frac {n (n-1) (n-2) \ cdots (n- (k-1))} {k (k-1) (k-2) \ cdots 1}} = \ prod = 1} ^ {k} {\ frac {n 1-i} {i}},}  Â

di mana pembilang dari fraksi pertama                           n                                  k              _                                         {\ displaystyle n ^ {\ garis bawah {k}}}  dinyatakan sebagai kekuatan factorial yang jatuh. Formula ini paling mudah dipahami untuk interpretasi kombinatorial koefisien binomial. Pembilang member sejumlah cara untuk memilih urutan k objek yang berbeda, mempertahankan urutan seleksi, dari sekumpulan objek n . Penyebut menghitung jumlah urutan berbeda yang mendefinisikan k -kombinasi yang sama ketika pesanan diabaikan.

Since the symmetry of the binomial coefficients is related to k and n - k , the calculation can be optimized by setting the upper limit of the above product to the smaller k and n - k .

Factorial Formula

Akhirnya, meskipun secara komputasi tidak cocok, ada bentuk yang ringkas, sering digunakan dalam bukti dan derivasi, yang membuat penggunaan berulang fungsi faktorial yang dikenal:

                                                               (                                          n                k                                         )                                           =                                                 n               !                                          k               !                               (                n                -                k               )               !                                                               untuk                   Â          0          <=          k          <=          n         ,                  {\ displaystyle {\ binom {n} {k}} = {\ frac {n!} {k! \, (nk)!}} \ quad {\ text { untuk}} \ 0 \ leq k \ leq n,}   

where n ! show factorial n . This formula follows from the above multiplication formula by multiplying the numerator and denominator by ( n - k )! ; as a result involves many common factors for numerators and denominators. This is less practical for explicit calculations (in this case k small and n large) unless the first common factors are aborted (mainly because the factorial value grows very fast). The formula shows a less obvious symmetry of the multiplication formula (though from the definition)

yang mengarah ke rutinitas komputasi perkalian yang lebih efisien. Menggunakan notasi faktorial yang jatuh,

                                                               (                                          n                k                                         )                                           =                                  {                                                                                      n                                                                      k                          _                                                                                                       /                                       k                   !                                                                           jika                                       Â                    k                    <=                                                                n                        2                                                                                                                                                 n                                                                                                 n                            -                            k                                                   _                                                                                                       /                                       (                    n                    -                    k                   )                   !                                                                           jika                                       Â                    k                    & gt;                                                                n                        2                                                                                                                               .                  {\ displaystyle {\ binom {n} {k}} = {\ begin {cases} n ^ {\ garis bawah {k}}/k! & amp; {\ text { if}} \ k \ leq {\ frac {n} {2}} \\ n ^ {\ garis bawah {nk}}/(nk)! & amp; {\ text {if}} \ k & gt; {\ frac {n } {2}} \ end {cases}}.}   

Generalisasi dan koneksi ke seri binomial

Rumus perkalian memungkinkan definisi koefisien binomial untuk diperpanjang dengan mengganti n dengan bilangan acak ? (negatif, nyata, rumit) atau bahkan elemen dari setiap ring komutatif di dimana semua bilangan bulat positif dapat dibalik:

                                                               (                                         ?                k                                         )                                           =                                                ?                                                    k                    _                                                                          k               !                                           =                                                ?                (               ?                -                1               )                (               ?                -                2               )               ?                (               ?                -                k                               1               )                                          k                (                k                -                1               )                (                k                -                2               )               ?                1                                                               untuk                   k         ?                     N                              dan arbitrary                  ?         .                  {\ displaystyle {\ binom {\ alpha} {k}} = {\ frac {\ alpha ^ {\ garis bawah {k}}} {k!}} = {\ frac {\ alpha (\ alpha -1) (\ alpha -2) \ cdots (\ alpha -k 1)} {k (k-1) (k-2) \ cdots 1}} \ quad {\ text { untuk}} k \ in \ mathbb {N} {\ text {dan sewenang-wenang}} \ alpha.}   

Dengan definisi ini, seseorang memiliki generalisasi rumus binomial (dengan salah satu variabel ditetapkan ke 1), yang membenarkan masih memanggil                                                                        (                                            ?                k                                          )                                                         {\ displaystyle {\ tbinom {\ alpha} {k}}}  koefisien binomial:

This formula applies to all complex numbers ? and X with | X | & lt; Ã, 1. This can also be interpreted as the identity of the formal power sequence at X , where it can actually serve as the definition of an arbitrary power of a power series with a constant coefficient of 1; The bottom line is that by this definition all identity holds are expected to be exponential, in particular

             (         1                  X                  )                        ?                         (         1                  X                  )                        ?                          =        (         1                  X                  )                        ?     Â              ?                                             and                        (        (         1                  X                  )                        ?                                   )                        ?                          =        (         1                  X                  )                        ?             ?                          .           < {\ displaystyle (1 X) quad {\ text {and}} \ quad ((1 X) ^ {\ alpha}) ^ {\ beta} = (1 X) ^ {\ alpha \ beta}.}  Â

If ? is a non-negative integer n , then all terms with k Ã, & gt; Ã, n is zero, and the endless series becomes a finite number, thereby restoring the binomial formula. However, for other values ​​? , including negative integers and rational numbers, this circuit is completely unlimited.

The Central Binomial Coefficient | pzakmth350
src: pzakmth350.files.wordpress.com


Pascal Triangle

Pascal's rule is an important repetition relation

yang dapat digunakan untuk membuktikan dengan induksi mathematical yang                                                                        (                                            n                k                                          )                                                         {\ displaystyle {\ tbinom {n} {k}}}  adalah bilangan asli untuk semua n dan k , fakta yang tidak langsung terlihat jelas dari rumus ( 1).

Pascal's rule also gives rise to the Pascal triangle:

Nomor baris n berisi angka                                                                        (                                            n                k                                          )                                                         {\ displaystyle {\ tbinom {n} {k}}}   untuk k = 0,..., n . Ini dibangun dengan memulai dengan yang di luar dan kemudian selalu menambahkan dua angka yang berdekatan dan menulis jumlah tepat di bawahnya. Metode ini memungkinkan perhitungan cepat koefisien binomial tanpa perlu fraksi atau perkalian. Misalnya, dengan melihat baris nomor 5 dari segitiga, seseorang dapat dengan cepat membacanya

( x and ) 5 = 1 x < sup> 5 5 x 4 and 10 x 3 and 2 10 x 2 and 3 5 x and 4 1 and 5 .

The difference between the elements on the other diagonals is the element in the previous diagonal, as a consequence of the recurrent relation ( 3 ) above.

Properties of binomial coefficients - YouTube
src: i.ytimg.com


Combinatorics and statistics

Koefisien binomial sangat penting dalam kombinatorik, karena mereka menyediakan formula siap untuk masalah penghitungan sering tertentu:

  • Ada                               Source of the article : Wikipedia

Comments
0 Comments